
Indexing Multimedia Data

Tecnologie delle Basi di Dati M

Plan of activities

 In the following we will go through 2 distinct topics, all of them being
related by the common objective to provide efficient support to the
execution of MM similarity queries

1. We will first consider metric trees, which allow us to deal even with

non-vector features and with distance functions other than (weighted)
Lp-norms

2. Finally, we will try to shed some light on the phenomenon of
dimensionality curse, and then present some index structures that have
been designed to (partially) solve such problem

Tecnologie delle Basi di Dati M 2 Indexing MM data

Beyond vector spaces

 It’s a matter of fact that vector spaces, equipped with some (weighted)
Lp-norm, are not general enough to deal with the whole variety of feature
types and distance functions needed for MM data

Example:
 given 2 sets of points s1 and s2, their Hausdorff distance is defined as

follows:

Tecnologie delle Basi di Dati M 3

1  (red) point of s1 find the closest (blue) point in s2

 Let h(s1,s2) be the maximum of such distances

2  (blue) point in s2 find the closest (red) point in s1

 Let h(s2,s1) be the maximum of such distances

3 Let dHaus(s1,s2) = max{ h(s1,s2), h(s2,s1) }

Used for matching shapes

Indexing MM data

Another example: set similarity

 We have logs of WWW accesses, where each log entry has a format like:

 www-db.deis.unibo.it pciaccia -

 [11/Jan/1999:10:41:37 +0100]

 “GET /~mpatella/ HTTP/1.0” 200 1573

 Log entries are grouped into sessions (= sets of visited pages):
 s = <ip_address, user_id, [url1,,urlk]>

 and we want to compare “similar sessions” (i.e., similar sets), using:

Tecnologie delle Basi di Dati M 4

 
s2s1

s1s2s2s1
s2s1,dsetdif f






s1 s2

Indexing MM data

Another example: edit distance

 A common distance measure for strings is the so-called edit distance, defined
as the minimum number of characters that have to be inserted, deleted, or
substituted so as to transform a string s1 into another string s2

Tecnologie delle Basi di Dati M 5

dedit(‘ball’,‘bull’) = 1 dedit(‘balls’,‘bell’) = 2 dedit(‘rather’,‘alter’) = 3

dedit(‘gatctggtgg’,‘agcaaatcag’) = 7

 The edit distance is also commonly used in genomic DB’s to compare

DNA sequences.

 Each DNA sequence is a string over the 4-letters alphabet of bases:

a: adenine

c: cytosine

g: guanine

 t: thymine

g a t c t g g t g - g

1 = 2 = 3 4 5 = 6 7 =

- a g c a a a t c a g

The edit distance can be computed using a dynamic

programming procedure, similar to the one seen for the DTW

Indexing MM data

Computing the Edit Distance

 The cost matrix is used to incrementally build the new matrix dedit, whose
elements are recursively defined as:

Tecnologie delle Basi di Dati M 6

r 1 1 1 1 1 0

e 1 1 1 1 0 1

h 1 1 1 1 1 1

t 1 1 1 0 1 1

a 1 0 1 1 1 1

r 1 1 1 1 1 0

0 1 1 1 1 1

a l t e r

}d,d,min{dcostd
1j-1,-iedit;1j-i,edit;j1,-iedit;ji,ji,edit; 

s2

s1

r 6 5 5 5 4 3

e 5 4 4 4 3 4

h 4 3 3 3 3 4

t 3 2 3 2 3 4

a 2 1 2 3 4 5

r 1 1 2 3 4 4

0 1 2 3 4 5

a l t e r dedit cost

s2

s1

Indexing MM data

Metric spaces

 A metric space M = (U,d) is a pair, where
U is a domain (“universe”) of values, and
d is a distance function that,  x,y,z  U, satisfies the metric axioms:

 d(x,y)  0, d(x,y) = 0  x = y (positivity)

 d(x,y) = d(y,x) (symmetry)

 d(x,y)  d(x,z) + d(z,y) (triangle inequality)

 All the distance functions seen in the previous examples are metrics,

and so are the (weighted) Lp-norms

 The only distance we have seen so far that does not fit the metric
framework is the DTW

Tecnologie delle Basi di Dati M 7

Metric indexes only use the metric axioms

to organize objects, and exploit

the triangle inequality to prune the search space

Indexing MM data

Principles of metric indexing (1)

 Given a “metric dataset” P  U, one of the two following principles can be
applied to partition it into two subsets

Ball decomposition: take a point v (“vantage point”), compute the distances of
all other points p w.r.t. v, d(p,v), and define

P1 = {p : d(p,v)  rv } P2 = {p : d(p,v) > rv }

 If rv is chosen so that |P1||P2||P|/2 we obtain a balanced partition

Tecnologie delle Basi di Dati M 8

v

dL2

q

rv

r

Consider a range query {p: d(p,q)  r}

If d(q,v) > rv + r we can conclude that

no point in P1 belongs to the result

Proof:

we show that d(p,q) > r holds p  P1.

d(p,q)  d(q,v) – d(p,v) (triangle ineq.)

 > rv + r – d(p,v) (by hyp.)

  rv + r – rv (by def. of P1)

  r 

P1

P2

Similar arguments can be applied to P2

p

Indexing MM data

Principles of metric indexing (2)

Generalized Hyperplane: take two points v1 and v2, compute the distances of
all other points p w.r.t. v1 and v2, and define

P1 = {p : d(p,v1)  d(p,v2)} P2 = {p : d(p,v2) < d(p,v1) }

Tecnologie delle Basi di Dati M 9

v1

dL2

q

r

P1

P2

v2

Consider a range query {p: d(p,q)  r}

If d(q,v1) – d(q,v2) > 2*r we can conclude

that no point in P1 belongs to the result

Proof:

we show that d(p,q) > r holds p  P1.

d(q,v1) – d(p,q)  d(p,v1) (triangle ineq.)

d(p,v1)  d(p,v2) (def. of P1)

d(p,v2)  d(p,q) + d(q,v2) (triangle ineq.)

Then:

d(q,v1) – d(p,q)  d(p,q) + d(q,v2)

d(p,q)  (d(q,v1) – d(q,v2))/2

 > r (by hyp.) 

p

Indexing MM data

The M-tree (Ciaccia, Patella & Zezula, 1997)

 The M-tree has been the first dynamic, paged, and balanced metric index

 Intuitively, it generalizes “R-tree principles” to arbitrary metric spaces
 The M-tree treats the distance function as a “black box”

 Since 1997 [CPZ97], the M-tree has been used by several research groups for:
 Image retrieval, text indexing, shape matching, clustering algorithms,

fingerprint matching, DNA DB’s, etc.

 [CNB+01] and [HS03] are both excellent surveys on searching in metric
spaces

 C++ source code freely available at http://www-db.deis.unibo.it/Mtree/

Remind: at a first sight, the M-tree “looks like” an R-tree.
However, remember that the M-tree only “knows” about distance values,
thus it ignores coordinate values and does not rely on any “geometric”
(coordinate-based) reasoning

Indexing MM data Tecnologie delle Basi di Dati M 10

http://www-db.deis.unibo.it/Mtree/
http://www-db.deis.unibo.it/Mtree/
http://www-db.deis.unibo.it/Mtree/

M-tree: how it looks like

Tecnologie delle Basi di Dati M 11

 Recursive bottom-up
aggregation of objects
based on regions

 Regions can overlap

 Each node can contain up
to C entries, but not less
than c  0.5*C

 The root makes an
exception

dL2

C D E F

A B

B

F
D

E A

C

 Depending on the metric, the “shape” of index regions changes

L1 L Weighted Euclidean quadratic distance

Indexing MM data

The M-tree regions

 Each node N of the tree has an associated region, Reg(N), defined as

Reg(N) = {p: p U , d(p,vN)  rN}

 where:
 vN (the “center”) is also called a routing object, and

 rN is called the (covering) radius of the region

 The set of indexed points p that are reachable from node N are guaranteed
to have d(p,vN)  rN

Tecnologie delle Basi di Dati M 12

rN
vN

p

 This immediately makes it possible to
apply the pruning principle:

If d(q,vN) > rN + r then prune node N

Indexing MM data

Entries of leaf and internal nodes

 Each node N stores a variable number of entries

Leaf node:

 An entry E has the form E=(ObjFeatures,distP,TID), where
 ObjFeatures are the feature values of the indexed object

 distP is the distance between the object and its parent routing object
(i.e, the routing object of node N)

Internal node:

 E=(RoutingObjFeatures,CoveringRadius,distP,PID), where
 RoutingObjFeatures are the feature values of the routing object

 CoveringRadius is the radius of the region

 distP is the distance between the routing object and its parent routing
object (undefined for entries in the root node)

Tecnologie delle Basi di Dati M 13 Indexing MM data

Entries: an example

Tecnologie delle Basi di Dati M 14

((2,3),2,p1)

N7

((2,5),2.5,5,)

((4,6),5,_,)

N3

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

y

x

p1

v7

v3

Indexing MM data

Fast pruning based on distP

 Pre-computed distances distP are exploited during query execution to save
distance computations

 Let vP be the parent (routing) object of vN

 When we come to consider the entry of vN, we
 have already computed the distance d(q,vP) between the query and its

parent

 know the distance d(vP,vN)

Tecnologie delle Basi di Dati M 15

rN

vN

q

r

From the triangle inequality it is:

d(q,vN)  |d(q,vP) - d(vP,vN)|

Thus we can prune node N

without computing d(q,vN) if

 |d(q,vP) - d(vP,vN)| > rN + r

vP

d(vP,vN)
d(q,vP)

Indexing MM data

Example (edit distance)

Tecnologie delle Basi di Dati M 16

1

pier
peer

spier

tier

piper
pie

1 1

1 1

r=3
r=1

r=5

spare

parse spire spore

fare

paris

3
3

2

2

2
4

shakespeare r=5

N3

(spare,5,0), (shakespeare,5,0) …

(pier,1,4) (parse,3,2) …

…

(pier,0) (tier,1) (spier,1)
(pie,1) (piper,1) (peer,1)

(parse,0) (spore,3) (fare,2)
(spire,3) (paris,2)

N0

N1 N2

N4

query = “spire”, r = 1

d(“spire”, “shakespeare”) =

= 7 > 5 +1

d(“spire”, “spare”) =

= 1  5 +1

| d(“spire”, “spare”) –

 d(“pier”, “spare”) | =

= | 1 – 4 | = 3 > 1 +1

| d(“spire”, “spare”) –

 d(“parse”, “spare”) | =

= | 1 – 2 | = 1  3 +1

d(“spire”, “parse”) =

= 3  3 +1

| d(“spire”, “parse”) –

 d(“parse”, “parse”) | =

= | 3 – 0 | = 3 > 1

spire spore

Indexing MM data

Experimental results

 Synthetic datasets (10 Gaussian clusters)

 Up to 40% cost reduction with fast pruning

Tecnologie delle Basi di Dati M 17

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50

c
o
m

p
u

te
d

 d
is

ta
n
c
e

s

dim

M-tree (fast pruning)

M-tree (no f. p.)

R*-tree

Indexing MM data

Insertion and split (sketch)

 The procedure to insert a new object is based on the ChooseSubtree method

 The Penalty method considers the increase of the covering radius needed to
accommodate the new object
 Remind: no “volume” can be computed!

 For managing a split, there are several alternatives, among which [CPZ97]:
 mM_RAD minimize the maximum of the two resulting radii

 M_LB_DIST choose the closest and the farthest object from vN

 Experiments demonstrate that mM_RAD is the best

Tecnologie delle Basi di Dati M 18

0

200

400

600

800

1000

5 10 15 20 25 30 35 40 45 50

I/
O

s

Dim

M_LB_DIST

mM_RAD

0

0.05

0.1

0.15

0.2

0.25

0.3

5 10 15 20 25 30 35 40 45 50

d
is

t.
 c

o
m

p
.
(%

)

Dim

M_LB_DIST

mM_RAD

Indexing MM data

Experiments (k-NN and range queries)

 68,000 color images

 32-dim (color histograms), L2

 161,212 text rows

 Edit distance

Tecnologie delle Basi di Dati M 19

0

1

2

3

4

5

0 10 20 30 40 50

ti
m

e
 (

s
e

c
s

)

k

M-tree

seq. scan

0

10

20

30

40

50

1 2 3 4 5 6

ti
m

e
 (

s
e

c
s

.)

query radius (r)

M-tree

seq. scan

The logic of search algorithms is the one already seen

for range and k-NN queries with the R-tree

Indexing MM data

Pivot-based indexing (pivot tables)

 It is a sequential (main memory) structure

 It exploits the ball partitioning principle (without recursion)

 The idea:
 choose a (pivot) point v

 compute (and store) distances between all data points and v, d(v,p)

 at query time, compute d(q,v)

 if |d(q,v) – d(v,p)| > r then p cannot be part of the result

Indexing MM data Tecnologie delle Basi di Dati M 20

p

q

r

v

d(v,p)

d(q,v)

Pivot tables (AESA/LAESA)

 The same principle can be applied to another pivot, and to another, and so on

 In AESA (Approximating and Eliminating Search Algorithm, Vidal 1984) every
data point acts as a pivot
 Pros: for each data point we have an increasing number of pivots (every

time we cannot prune a data point p, we compute d(q,p), thus p can be
used as a pivot for subsequent points)

 Cons: the table grows quadratically with the data size

 In LAESA (Linear AESA, Micó and Oncina 1994) the pivots are a fixed number
(M) of randomly chosen points (possibly not in the dataset)
 A point p can be excluded if |d(q,vi) – d(vi,p)| > r for any pivot vi

 This is equivalent to have a constraint d(vi,p) [d(q,vi) –r, d(q,vi) +r] for
any pivot vi

 This is equivalent to a query window in a M-dimensional space

 The Omni-indices use "regular" structures (B-trees, R-trees, etc.) to index the
M-dimensional space

 The choice of "good" pivots and of an optimal value for M are still open
research issues

Indexing MM data Tecnologie delle Basi di Dati M 21

High-dimensional spaces (1)

 The geometry of high-dimensional spaces is intriguing, since our common-
sense intuitions fail, as the following examples show

1st example: “is the center in the sphere?”
 Consider the unitary hypercube [0,1]D with center c = (0.5,…,0.5), and the

D-dimensional hypersphere SD centered in the origin o = (0,…,0) and with
radius r = 1.

 Our intuition, and the figure as well, confirms that for D=2 c is inside SD

 Let’s see what happens when D grows:

 Thus,
when D > 4 c is external to the sphere!

Tecnologie delle Basi di Dati M 22

c

o

D0.50.5D0.5o)(c,L 2

D1,i

2

2  


Indexing MM data

High-dimensional spaces (2)

2nd example: “where are the points?”
 Consider again the unitary hypercube [0,1]D

 Now, take a hypercube B of side 1 – 2   and center c = (0.5,…,0.5)

 The volume of B grows like

 As the table shows, even for (very) small  values,
Vol(B) sharply reduces

 If we have N points uniformly distributed over [0,1]D, then only a fraction
equal to Vol(B) will be contained, on the average, in B

 Thus, all points are close to the surface of [0,1]D !

Tecnologie delle Basi di Dati M 23

Dε)2(1Vol(B) 

2 50 100 500 1000

0.1 0.64 1.43E-05 2.04E-10 3.51E-49 1.23E-97

0.05 0.81 0.01 2.66E-05 1.32E-23 1.75E-46

0.01 0.96 0.36 0.13 4.10E-05 1.68E-09

  1 – 2  
 \ D

Indexing MM data

High-dimensional spaces (3)

3rd example: “How big a sphere is?”
 Consider the unitary hypercube [0,1]D and the D-dimensional hypersphere

SD centered in c = (0.5,…,0.5) and with radius r = 0.5

 The volume of SD can be computed as (D even):

 The following table (from [WSB98]) shows,
for various values of D and assuming that points
are uniformly distributed over [0,1]D:

 The volume of SD, Vol(SD)

 The number of points N needed to have, on the average,
at least 1 point in SD (this is just 1/ Vol(SD))

 Thus, the number of points should grow exponentially to have at
least 1 point in Sd!

Tecnologie delle Basi di Dati M 24

 !D/2

0.5
)Vol(S

DD/2
D 

π

D Vol(S) N

2 0.785 1.27

4 0.308 3.24

10 0.002 401.50

20 2.46E-08 40631627

40 3.28E-21 3.05E+20

100 1.87E-70 5.35E+69

c

D

Indexing MM data

High-dimensional spaces (4)

4th example: “How far is the nearest neighbor?”
 Continuing with the previous example, we can compute the expected

(Euclidean) distance of the nearest neighbor of the center c=(0.5,…,0.5) of SD

 The following graph (from [WSB98]) shows how the NN distance grows with D
when N = 106

 Thus, the closest point is far away!

Tecnologie delle Basi di Dati M 25 Indexing MM data

High-dimensional spaces (5)

5th example: “How far are the other points?”
 We now plot the distance distribution of the dataset, for various values of D

 The distance distribution shows, for a given value of d, which is the
percentage of points whose distance is d

 It can be observed that when D grows, the variance of distances decreases

 Thus, in high-dimensional spaces all points tend to have the same
distance from the query!

Tecnologie delle Basi di Dati M 26

0

1000000

2000000

3000000

4000000

5000000

6000000

0 1 2 3 4

d

2

5

10

20

40

Indexing MM data

Basic facts about high-dim. spaces (1)

 The analysis in [WSB98] demonstrates that, no matter how smart you are in
designing a new index structure, there always exists a value of D such that
the index performance will deteriorate, and sequential scan will become the
best alternative!

 However, the analysis applies to uniformly distributed datasets and
Euclidean distance…

 If data are not uniformly distributed (as it always happens!), then the
authors argue that their analysis still applies, provided one considers the
“intrinsic dimensionality” of the dataset

 The concept of “intrinsic dimensionality” is not precisely definable,
intuitively it is the “true dimensionality” of our data
 E.g.: a line has intrinsic dimensionality 1, regardless of D

 Some attempts to characterize the intrinsic dimensionality of a dataset have
been based on the concept of fractals (e.g., see [FK94])

Tecnologie delle Basi di Dati M 27 Indexing MM data

Basic facts about high-dim. spaces (2)

 From a more pragmatical point of view, experimental results obtained with
both spatial and metric indexes confirm that high-dimensional datasets are
often a nightmare!

 This is the so-called “dimensionality curse”!

 For the structures we have seen (R-tree and M-tree), what is observed is an
incredible amount of overlap between the regions of index nodes
 The graph shows the percentage of M-tree regions that enclose a query

point q, i.e., those regions for which dMIN(q,Reg(N)) = 0

 Thus, all such regions can never be pruned during a k-NN search!

Tecnologie delle Basi di Dati M 28

0%

25%

50%

0 100 200

D
Indexing MM data

Partitioning without overlap

 If we partition the [0,1]D space into non-overlapping regions, similar
problems arise

 For instance, consider a uniform distribution of points, and assume we split
a dimension in the mid-point 0.5 (thus, each time we double the number of
regions). We can split at most D’ = log2N dimensions

 Consider the region: Reg = [0,0.5]  …  [0,0.5]  [0,1]  …  [0,1]

 whose farthest point is q = (1,…,1)

 The Euclidean distance of q from Reg is:

 With N = 106 we have D’=20 and L2(Reg,q)=2.236

 Since this is independent of D, whereas the expected NN distance grows
with D, for values of D large enough (D  80) Reg will be accessed, and this
holds for any other region!

Tecnologie delle Basi di Dati M 29

   Nlog0.5D'0.50.5D'0.51-q)(Reg,L 2

2

D'1,i

2

2  


Indexing MM data

The X-tree [BKK96]: basic idea

 The X-tree is an evolution of the R-tree, aiming to deal with the “overlap
problem”

 When a node has to be split, if an overlap-free split is possible then it is
performed as usual, otherwise a new, larger, super-node, is allocated
 Thus, now we have nodes of variable size

 The price to be paid is that searching within a super-node is more costly
than searching within nodes

Tecnologie delle Basi di Dati M 30 Indexing MM data

The X-tree: what happens when D grows

 Although the X-tree performs better than the R-tree for medium values of
D, when the dimensionality increases the index degenerates to a sequential
organization!

Tecnologie delle Basi di Dati M 31

D = 4

D = 8

D = 16

Indexing MM data

The VA-file (Weber, Schek & Blott, 1998)

 The basic idea of the VA-file [WSB98] is to speed-up the sequential scan by
exploiting a “Vector Approximation”

 Each dimension of the data space is partitioned into 2bi intervals using bi bits
 E.g.: the 1st coordinate uses 2 bits, which leads to the intervals 00,01,10,

and 11

 Thus, each coordinate of a point (vector) requires now bi bits instead of 32

 The VA-file stores, for each point of the dataset, its approximation, which is a
vector of i=1,D bi bits

Tecnologie delle Basi di Dati M 32

11

10

01

00

00 01 10 11

p1 0.1 0.6

p2 0.7 0.4

p3 0.9 0.3 p1

p2

p3

p1 00 10

p2 10 01

p3 11 11 Data space

Feature values

VA-file

Indexing MM data

The VA-file: query processing

 Query processing with the VA-file is based on a filter & refine approach

 For simplicity, consider a range query

Filter: the VA file is accessed and only the points in the regions that intersect the
query region are kept

Refine: the feature vectors are retrieved and an exact check is made

Tecnologie delle Basi di Dati M 33

actual results

false drops

excluded points
q

r

Indexing MM data

Conclusions (?)

 The issue of efficiently indexing complex datasets is far from having been
solved

 Starting from the end of 90’s, many solutions have been proposed, and new
ideas have emerged

 Unfortunately, the absence of a well-defined and accepted benchmark
makes it almost impossible to compare all such solutions

 The basic lesson to be learned is that, no matter how a structure has been
cleverly designed, ultimately it has to be contrasted with the sequential
scan!

 Thus, be skeptical if someone claims to have designed an index showing
“superior performance” w.r.t. the others: always look if sequential scan has
been taken as a competitor!

Tecnologie delle Basi di Dati M 34 Indexing MM data

